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Background
In recent years, biomedical text mining has become an urgent problem since the manual 
curation lags far behind the explosive growth of biomedical literature. In biomedical text 
mining, relation extraction (RE) is an important task that aims to identify the relations 
between biomedical entities mentioned in the text. Substantial techniques have been 
developing to extract biomedical relations such as protein-protein interactions (PPI [1]), 
drug-drug interactions (DDI [2]), chemical protein interactions (ChemProt [3]). After 
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the extraction of different relations, we can convert the unstructured literature to struc-
tured information, which is a crucial step towards natural language understanding appli-
cations like automated reasoning [4], machine translation [5], question answering [6], 
etc.

Extraction of various relations in biomedical domain has attracted tremendous atten-
tions and many different methods have been proposed [7–11]. Recently, language model 
methods dominate the relation extraction field with their superior performance [12–15]. 
Applying language models on relation extraction problem includes two steps: the pre-
training and the fine-tuning. In the pre-training step, a vast amount of unlabeled data 
can be utilized to learn a language representation. The fine-tuning step is to learn the 
knowledge in task-specific (labeled) datasets through supervised learning. Among all the 
language models, BERT [14]—Bidirectional Encoder Representations from Transform-
ers [16], attracts lots of attentions from researchers in different fields.

BERT is designed to learn a universal and context-dependent language representa-
tion using the transformer encoder [16]. Originally, BERT was proposed to learn the 
representation for general domain. To make the model generalize better in biomedical 
domain, several BERT adaptations for the biomedical domain have been proposed such 
as BioBERT [17], BlueBERT [18], SciBERT [19], and PubMedBERT [20]. BioBERT [17] 
further pre-trains the BERT model on PubMed abstracts and PMC full-length articles; 
BlueBERT [18] is further pre-trained on PubMed abstracts and MIMIC-III clinical notes 
[21]; A collection of 1.14M articles from Semantic Scholar [22] are used to pre-train 
SciBERT model [19]. While the first three biomedical BERT models are pre-trained on 
the basis of the original BERT, PubMedBERT [20] is pre-trained with whole-word mask-
ing from scratch using PubMed abstracts.

In this work, we propose and evaluate two approaches to improve the BERT-style 
model on relation extraction tasks. We first consider the approach for the pre-training 
phase and later discuss the other that is related to the fine-tuning phase. Our goal to 
improve the pre-training of BERT model is motivated by the results of the experiments 
we conducted to investigate differing performances of several BERT-based models for 
the biomedical domain. Different models such as BioBERT [17], SciBERT [19] and Blue-
BERT [18] are developed for the biomedical domain. One of the primary differences 
between them is the corpora used in the pre-training for domain adaptation. Those 
pre-trained BERT models are suppose to have similar performance on similar applica-
tions since they were pre-trained on similar biomedical data. However, our experiments 
reveal that those models have significantly different performance on the same set of 
relation extraction tasks (Table 2). Therefore, we hypothesize that the text used in the 
pre-training for domain adaptation can have a significant impact on the downstream 
applications.

In order to leverage the pre-training for a specific task, we introduce another level of 
adaptation to adjust the domain adaptation to specific sub-domains in this work. We 
call this part sub-domain adaptation. To fulfill this task, we add one more pre-training 
step on sub-domain data. For example, for a relation extraction task like the extraction 
of drug-drug interactions (DDI), we investigate whether adding more drug-specific text 
can help over general biomedical domain knowledge. After the sub-domain adaptation, 
we expect that the pre-trained BERT model will generalize better on the specific tasks. 



Page 3 of 20Su and Vijay‑Shanker ﻿BMC Bioinformatics          (2022) 23:120 	

There are several studies using the labeled training data in the pre-training of language 
model for better generalization [23, 24]. However those methods are not feasible for our 
tasks since we also need the context of the training sentences (for Next Sentence Predic-
tion in pre-training of BERT). Thus, we propose a new approach to acquire more general 
pre-training data for our tasks.

Our motivation to improve the fine-tuning of BERT is from the following observa-
tions. All previous work utilizing BERT-based models for relation extraction tasks 
employ a standard way of fine-tuning using the classification token (CLS) alone among 
the last layer. Thereby all information contained in other final layer nodes is completely 
ignored during the fine-tuning process. However, the ignored knowledge in the last layer 
of BERT model is utilized for other tasks like sequence tagging. From this point of view, 
the BERT model is fine-tuned with one less layer for classification tasks. This drives us to 
design a new mechanism of using all the information in the last layer for the classifica-
tion tasks. There are several studies that apply additional layers on the outputs of BERT 
like Sentence-BERT [25], proteinBERT [26]. Our work differs from the previous work 
in the following aspects: (1) we demonstrate the usefulness of the knowledge in the last 
layer of BERT utilizing the probing technique; (2) we investigate three different methods 
(LSTM, biLSTM, and attention mechanism) to summarize the information in the last 
layer; (3) we provide some evidence to explain why the attention mechanism is perform-
ing better than the other two methods.

In addition, our investigation of improving fine-tuning mechanism is partially driven 
by the insights in [27], in which the authors find that the BERT model learns the repre-
sentation similar to traditional natural language processing (NLP) pipelines. Based on 
the findings in [27], the basic syntactic aspects of the text appear to be learned in the 
lower layers, while high-level semantic information appears in the higher layers of BERT. 
Since relation extraction tasks are concerned with the semantic relations between enti-
ties, we were curious about whether the upper (including top) layers contain important 
information about relation extraction tasks. During this investigation, we employ the 
edge probing technique [28] to measure how much relevant information (about relation 
extraction tasks) the last layer contains. The results illustrate that the last layer of BERT 
model contains useful information, but it is unused in the original fine-tuning method 
of only using classification (CLS) token. To incorporate the unused information from 
the last layer into fine-tuning, we explore two different methods: recurrent neural net-
work (RNN) and attention mechanism [29]. The summarized knowledge will be con-
catenated with the classification token as the model output in an improved fine-tuning 
mechanism. We call it fine-tuning with information summarization of the last layer (SLL 
fine-tuning).

To demonstrate the effectiveness of our proposed approaches in the pre-training and 
fine-tuning process, we evaluate them on three extensively studied relation extraction 
tasks in biomedical field: protein-protein interactions (PPI [1]), drug-drug interactions 
(DDI [2]), and chemical-protein interactions (ChemProt [3]). The experiment results 
illustrate that both sub-domain adaptation and the proposed fine-tuning mechanism can 
boost the model performance on all the tasks. In addition, the combination of these two 
approaches outperform previous methods on the three benchmark datasets.



Page 4 of 20Su and Vijay‑Shanker ﻿BMC Bioinformatics          (2022) 23:120 

In summary, the contributions of this work are:

•	 Demonstrating that further adaptation on sub-domain data can improve the pre-
training of BERT model for specific tasks;

•	 Utilizing the edge probing technique to explore the ignored knowledge in the last 
layer of BERT model;

•	 The SLL fine-tuning mechanism is proposed to utilize all the available knowledge in 
the last layer to boost the BERT model performance;

•	 State-of-the-art performance is achieved on three relation extraction benchmark 
datasets.

Results and discussion
In this work, we experiment with two types of BERT model adapted for the biomedical 
domain: (1) the BERT model adapted from general domain using biomedical text (e.g., 
BioBERT [17], BlueBERT [18], SciBERT [19]); (2) the BERT model adapted from scratch 
using biomedical text (e.g., PubMedBERT [20]). Our study starts with the comparison of 
BERT models from the first type. Then we experiment with both types of BERT models 
on the proposed approaches. We choose BioBERT from the first type of BERT models as 
it generally outperforms SciBERT and BlueBERT on our tasks (Table 2). For the second 
type of BERT model, we use PubMedBERT in our experiments.

We verify the effectiveness of the proposed approaches on three benchmark datasets 
and we show the statistics of these datasets in Table 1. We use the AIMed corpus [30] for 
the PPI task. For the ChemProt and DDI tasks, we use the datasets in [2, 3], respectively. 
We employ the the same spilt of training, development, and test sets with the PubMed-
BERT model [20] during the model evaluation. For the AIMed corpus, standard sets of 
training and test are not available, so we apply 10-fold cross-validation during evalua-
tion. We employ precision (P), recall (R) and F1-score (F) to evaluate the model on the 
PPI task since it is a binary classification problem. However, the models for ChemProt 

Table 1  Datasets statistics for PPI, DDI, and ChemProt

For the AIMed dataset of PPI, there are only two labels: Positive and Negative. The ChemProt corpus is labeled with five 
positive classes (CPR:3, CPR:4, CPR:5, CPR:6, CPR:9) and the negative class. Similarly, the DDI dataset contains four positive 
labels (ADVICE, EFFECT, INT, MECHANISM) and one negative label

Dataset Instance # Train Dev Test

PPI(AIMed) 5,834 – – –

DDI 33,508 22,233 5559 5716

ChemProt 45,048 18,035 11,268 15,745

Table 2  Performance (F1 score) of BERT models on the ChemProt, DDI, and PPI datasets

Model PPI DDI ChemProt

BioBERT 81.0 79.0 75.3

SciBERT 78.8 78.7 74.4

BlueBERT 71.9 76.8 71.2
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and DDI tasks will be evaluated with micro precision (P), recall (R) and F1 score (F) on 
the non-negative classes since they are multi-class classification problems.

In this section, we first discuss the effect of pre-training corpora on the BERT mod-
els. Next, the experiment results on sub-domain adaptation of BERT models are dem-
onstrated. Then, we present the results of exploring the learned knowledge in the last 
layer and the SLL fine-tuning. Also, the model performance of combining the proposed 
approaches for the pre-training and fine-tuning is provided for the three tasks. Finally, 
we perform an analysis on the learned attention weights from our SLL fine-tuning.

Impact of corpus on domain adaptation of different BERT models

We begin with a study of the impact of the corpora used to adapt BERT-based models 
to the biomedical domain. Specifically, we experiment with the three well-known mod-
els: BioBERT [17], BlueBERT [18] and SciBERT [19]. Considering these three models 
have the same architecture, the primary difference between them is the corpus used to 
adapt to the biomedical domain during pre-training. These three models are supposed 
to have similar performance, but the results are contrary to our expectation as they are 
summarized in Table 2. BlueBERT shows performance drop-off compared to the other 
two on our three datasets, especially on the PPI set. Thus, the text used in pre-training 
for domain adaptation appears to have a surprisingly significant influence on the perfor-
mance of BERT models on downstream tasks. A noticeable difference with BlueBERT, 
when compared to the other two models, is the inclusion of clinical notes text in the 
domain adaptation process, which differs considerably from the text used for pre-train-
ing other two models. Since all three evaluation sets are irrelevant to the clinical domain, 
we conduct an experiment to see if the removal of this extraneous material from pre-
training adaptation would impact the results. The results, shown in Table 3, suggest an 
improvement in BlueBERT’s performance (BlueBERT almost achieves the same results 
as the other two). This observation leads us to conjecture that task-related data in the 
pre-training might yield better generalization of BERT models on downstream tasks.

Sub‑domain adaptation

While all BERT models try to use a large corpus of text from the biomedical domain to 
obtain the domain-adapted versions, our results indicate that the differences between 
the domain adaptation text might have a noticeable impact on individual tasks, as each 
task requires its own specific knowledge. Therefore, we wish to further consider the pre-
training data for the pre-training phase.

Table 3  Performance of BlueBERT model on the PPI, ChemProt, and DDI tasks before and after 
removing MIMIC-III from the domain adaptation data

Bold values indicate better results

P: Precision; R: Recall; F: F1 Score; -M: Subtract the MIMIC-III clinical notes

Model PPI DDI ChemProt

P R F P R F P R F

BlueBERT 69.3 75.0 71.9 76.2 77.4 76.8 70.9 71.5 71.2

BlueBERT (-M) 76.6 83.1 79.6 80.0 78.5 79.2 74.7 75.8 75.2
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Given our investigation involving several relation extraction tasks, we consider the 
approach of utilizing task-related data to further adjust the adaptation for the domain 
underlying the tasks. Specifically, we extract data (unlabeled text) for three sub-
domains from PubMed for our tasks: protein/gene (P/G) domain, drug (D) domain and 
chemical+protein (CP) domain. These three sets of abstracts are used for sub-domain 
adaptation setup to produce three differently adapted BERT models: BERT(+P/G), 
BERT(+D) and BERT(+CP), respectively.

Table 4 presents the results of our experiments on sub-domain adaptation. The results 
are reported for both BioBERT and PubMedBERT, which have already been adapted to 
the biomedical domain. Their performances are shown in the first row and the fifth row, 
and serve as baselines to compare with those models that have additional pre-training 
for sub-domain adaptation. The other results in Table 4 show that the sub-domain adap-
tation can boost the BERT model performance on related tasks. Note that not only are 
similar results obtained for BioBERT and PubMedBERT, but also for each task, the addi-
tion of sub-domain adaptation phase improves the performance. Furthermore, the maxi-
mum improvement is obtained when the most relevant sub-domain text is used in the 
sub-domain adaptation phase. Specifically, the best results are obtained for the PPI task 
by using “protein/gene” related text. Also, the “drug” text leads to the highest perfor-
mance for the DDI task. Both BioBERT and PubMedBERT obtain maximum benefits in 
the use of “chemical+protein” text for sub-domain adaptation on the ChemProt task. On 
the other hand, adding drug related text does not help for the PPI task. Also, the addi-
tion of “protein/gene” text actually hurts the performance of both models when used for 
the DDI task.

All the experiment results indicate that the pre-trained BERT models generalize dif-
ferently on different tasks, and it is beneficial to add another level of adaptation on task-
specific data. In this work, we have demonstrated that using entity-related data in the 
sub-domain adaptation helps the model generalization on relation extraction tasks.

Table 4  BERT performance after pre-training with sub-domain data

Bold values indicate better results

P: Precision; R: Recall; F: F1 Score; +P/G: add Protein/Gene-related PubMed abstracts as sub-domain data; +D: add Drug-
related PubMed abstracts as sub-domain data; +CP: add protein-related and chemical-related PubMed abstracts as sub-
domain data

Model PPI DDI ChemProt

P R F P R F P R F

BioBERT 79.0 83.3 81.0 79.9 78.1 79.0 74.3 76.3 75.3

BioBERT (+P/G) 82.5 83.7 83.0 76.1 77.6 76.9 76.5 74.2 75.3

BioBERT (+D) 81.5 80.9 81.2 81.9 78.4 80.1 76.7 74.4 75.6

BioBERT (+CP) 81.3 83.7 82.4 78.7 79.0 78.8 76.6 76.1 76.4

PubMedBERT 80.1 84.3 82.1 82.6 81.9 82.3 78.8 75.9 77.3

PubMedBERT (+P/G) 81.2 85.5 83.3 83.7 80.5 82.0 80.5 75.5 77.9

PubMedBERT (+D) 79.1 85.3 82.0 84.1 81.7 82.9 80.4 74.6 77.4

PubMedBERT (+CP) 79.6 84.7 82.0 81.1 82.7 81.9 79.4 77.5 78.4
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Learned knowledge in the last layer of BERT

In this subsection, we focus on improving the fine-tuning process of BERT. Using the 
technique of probing classifier, we show that the last layer of BERT model contains use-
ful information that can be exploited to improve performance on downstream tasks 
(Fig. 1). Specifically, we compare the performance of probing classifiers using all L layers 
and first (L-1)-th layers to measure the knowledge captured in the last layer (not present 
in the previous layers). We can see that the probing classifier using the information in all 
L layers performs better on all three tasks, which means many instances are predicted 
correctly by adding the knowledge in the last (L-th) layer, but not using the knowledge 
in the first (L-1)-th layers. Thus it is beneficial to utilize those information during fine-
tuning of BERT. In addition, the outputs from the last layer are automatically computed 
during training and inference, we can just utilize them without extra cost.

Fig. 1  Learned knowledge of training data in the layers of BioBERT. L is the total layers of BERT model. 
“Measurement of Knowledge” ( �L

τ
 ) is defined in the Methods section

Table 5  Performance of BERT models on PPI, DDI, and ChemProt.

Bold values indicate better results

P: Precision; R: Recall; F: F1 Score; BioBERT/PubMedBERT_SLL_LSTM: model of summarizing the outputs of the last layer 
using LSTM; BioBERT/PubMedBERT_SLL_biLSTM: model of summarizing the outputs of the last layer using biLSTM; BioBERT/
PubMedBERT_SLL_Att: model of summarizing the outputs of the last layer using attention mechanism

Model PPI DDI ChemProt

P R F P R F P R F

BioBERT 79.0 83.3 81.0 79.9 78.1 79.0 74.3 76.3 75.3

BioBERT_SLL_LSTM 80.2 84.0 82.0 80.5 78.5 79.5 77.6 74.4 76.0

BioBERT_SLL_biLSTM 80.2 82.7 81.4 80.8 78.5 79.6 77.9 73.9 75.9

BioBERT_SLL_Att 80.7 84.4 82.5 81.6 79.4 80.5 77.5 75.1 76.3
PubMedBERT 80.1 84.3 82.1 82.6 81.9 82.3 78.8 75.9 77.3

PubMedBERT_SLL_LSTM 79.8 85.6 82.6 82.6 82.8 82.7 78.9 77.0 77.9
PubMedBERT_SLL_biLSTM 80.5 82.6 81.7 82.6 81.4 82.0 78.5 76.5 77.5

PubMedBERT_SLL_Att 81.3 85.0 83.1 84.3 82.7 83.5 78.3 77.6 77.9
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SLL fine‑tuning: utilizing the summarized information in the last layer

Having shown that the last layer contains some useful information, which is not 
exploited by current transformer-based models for RE, we consider two different 
methods to utilize it and incorporate the summarized information in a refined fine-
tuning process. In Table 5, we provide the model performance using different meth-
ods: RNN models (both LSTM and biLSTM) and attention mechanism. Clearly, the 
method of applying attention mechanism on the outputs of last layer (BERT_SLL_
Att) obtains the best performance on the three tasks. Specifically, the attention-based 
method on BioBERT model achieves F1 score improvement of 1.5%, 1.5%, and 1.0% 
on PPI, DDI, and ChemProt, respectively. Similarly, we also observe F1 improvements 
with the PubMedBERT model for the three tasks.

Even though the LSTM and biLSTM methods show less improvement compared 
to the use of attention mechanism, they improve the model performance in most of 
the cases. We also observe that LSTM and biLSTM have very similar performance, 
with LSTM being slightly better in general. Since the training of BERT considers the 
context of words from both directions, we hypothesize that the backward encoding in 
biLSTM will not provide extra information for the tasks(which partially explains the 
experiment results of LSTM and biLSTM). Therefore, we will only utilize LSTM when 
considering RNN model for the experiments in the following subsections.

Combining sub‑domain adaptation and SLL fine‑tuning mechanism

The two proposed techniques can be combined as they are for two independent stages 
of BERT model. As shown in Table 6, combining the sub-domain adaptation and the 
proposed fine-tuning mechanism can further boost the model performance on all the 
three tasks. The first two rows for BioBERT and PubMedBERT are just repetitions of 
the model performance from Table 5 and serve as the baselines for the results of using 

Table 6  BERT performance after combining sub-domain adaptation and the refined fine-tuning 
mechanism

Bold values indicate better results

P: Precision; R: Recall; F: F1 Score; BioBERT/PubMedBERT: original BERT model; BioBERT/PubMedBERT_SLL_Att: model of 
summarizing the outputs of the last layer using attention mechanism. +P/G: add Protein/Gene-related PubMed abstracts as 
sub-domain data; +D: add Drug-related PubMed abstracts as sub-domain data; +CP: add protein-related and chemical-
related PubMed abstracts as sub-domain data

Model PPI DDI ChemProt

P R F P R F P R F

BioBERT 9.0 83.3 81.0 9.9 8.1 9.0 4.3 6.3 5.3

BioBERT_SLL_Att 80.7 84.4 82.5 81.3 80.1 80.7 76.5 77.1 76.8

BioBERT_SLL_Att (+P/G) 83.1 84.7 83.8 80.4 79.7 80.0 78.4 75.1 76.7

BioBERT_SLL_Att (+D) 81.5 84.5 82.9 82.6 81.2 81.9 76.8 74.7 75.7

BioBERT_SLL_Att (+CP) 82.5 84.2 83.3 81.7 77.0 79.3 78.9 75.2 77.0

PubMedBERT 80.1 84.3 82.1 82.6 81.9 82.3 78.8 75.9 77.3

PubMedBERT_SLL_Att 81.3 85.0 83.1 84.3 82.7 83.5 78.3 77.6 77.9

PubMedBERT_SLL_Att (+P/G) 81.1 87.1 84.0 83.6 80.6 82.1 79.8 77.0 78.4

PubMedBERT_SLL_Att (+D) 81.4 84.5 82.9 84.9 83.2 84.0 79.5 75.9 77.7

PubMedBERT_SLL_Att (+CP) 81.4 85.7 83.4 85.0 81.4 83.2 79.7 77.7 78.7
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combined techniques. In comparison with the original BioBERT model, the model 
with combined techniques can improve the F1 score with 2.8%, 2.9%, and 1.7% on 
the PPI, DDI, and ChemProt tasks, respectively. Similarly, we can also boost the Pub-
MedBERT model performance with 1.9%, 1.7%, and 1.4% F1 score improvement on 
the three tasks, respectively. As far as we know, PubMedBERT is the state-of-the-art 
model for these three tasks. After further improving its performance, we now achieve 
the state-of-the-art performance on all three benchmark datasets.

More analysis: roles of classification ([CLS]) token in fine‑tuning

We have shown that the proposed fine-tuning method outperforms original fine-tun-
ing mechanism in Table 5. Both methods include the use of [CLS] token in the last 
layer, so it will be helpful to understand the role of [CLS] token. Here we experiment 
with the model of fine-tuning without [CLS] token to investigate the contribution of 
[CLS] token. In particular, we drop the [CLS] output and only utilize the summarized 
information from attention mechanism as the output of BERT model in both training 
and inference.

Here we experiment with both BioBERT and PubMedBERT models. In Table 7, the 
third and sixth row show the model performance of employing only the summarized 
outputs in the last layer (i.e., without [CLS] output). The four rows before (row 1, 2, 4, 
5) are only repetitions of the model performance from Table 5. We observe that fine-
tuning without using [CLS] token hurts the model performance on most cases and 
only BioBERT_SLL_Att* model performs slightly better on the PPI task. These results 
show that the [CLS] token in the last layer contains important information about our 
classification tasks.

In addition, the authors in [31] explore the contribution of [CLS] tokens from the 
intermediate layers of BERT, we also experiment with this method and observe worse 
model performance after incorporating the [CLS] outputs from the intermediate lay-
ers in all tasks. Thus, we will not present those results here. Our experiment results 
imply that it is better to use information from the last layer since the knowledge in 
the intermediate layers will be transferred to the latter layers (through the residual 
connection) during training and inference.

Table 7  Model performance without using the [CLS] token in the last layer

Bold values indicate better results

P: Precision; R: Recall; F: F1 Score; BERT_SLL_Att*: models of fine-tuning with only the summarized information from 
attention mechanism (without [CLS] token)

Model PPI DDI ChemProt

P R F P R F P R F

BioBERT 79.0 83.3 81.0 79.9 78.1 79.0 74.3 76.3 75.3

BioBERT_SLL_Att 80.7 84.4 82.5 81.3 80.1 80.7 76.5 77.1 76.8
BioBERT_SLL_Att* 82.3 83.5 82.8 79.7 77.6 78.6 76.4 74.5 75.4

PubMedBERT 80.1 84.3 82.1 82.6 81.9 82.3 78.8 75.9 77.3

PubMedBERT_SLL_Att 81.3 85.0 83.1 84.3 82.7 83.5 78.3 77.6 77.9
PubMedBERT_SLL_Att* 80.0 85.2 82.4 82.5 80.9 81.7 75.7 77.7 76.7
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Analysis of attention weights in the SLL fine‑tuning

In the previous subsection, we illustrate that utilizing additional attention mechanism 
yields better performance. We conduct some preliminary experiments to understand 
whether the additional mechanism focuses on specific parts of the input text for our 
tasks. We first visualize the weight distribution (from the attention mechanism) on 
the words (tokens) of the sentences and inspect which words (tokens) the model is 
focusing on. In Fig. 2, we have chosen three examples from the three tasks (one exam-
ple for each task) that were predicted incorrectly by the original BioBERT but are cor-
rectly classified by the BioBERT model with SLL fine-tuning. In Fig. 2, the darkness 
of the color represents the attention weight, which means the words with darker color 
have larger attention weights.

Figure  2 demonstrates that the attention mechanism is assigning relatively large 
weights on “informative” words (which express the relationship of the entities), which 
are usually called “trigger words” for the relations in the NLP field. It appears that the 
attention mechanism is learning to focus on the “trigger words” in our tasks when mak-
ing its predictions. For instance, in the example of PPI relation (Fig. 2a), the attention 
mechanism is assigning larger weights on the entity token (i.e., @PROTEIN$) and the 
trigger word (i.e., “activates”). The attention mechanism, likewise, assigns larger weights 
on the trigger words (“inhibit” and “mediate”) in the examples of DDI and ChemProt, 
respectively. Considering the original BioBERT model misclassified these sentences, 
those examples also show that the attention mechanism is able to learn the knowledge 
(especially about trigger words) of relation expression.

Fig. 2  The visualization of attention weights in the last layer. a PPI example; b DDI example; c ChemProt 
example

Table 8  The top 10 words with large learned attention weight in PPI, DDI, and ChemProt corpora

For the calculation of global attention weight, we use Porter’s stemmer [32] to obtain the word stem for each word since 
words might in different forms in the sentence. For example, the stem of “activate” is “activ”, and the words like “activation” 
and “activates” share the same word stem

Task Word stem

PPI Activ(ate), complex, associ(ate), interact, human

Protein, bind, domain, specif(y), receptor

DDI Concomitantli, combin(e), concomit(ant), increas(e), use

Concurr(ent), decreas(e), inhibit, receiv(e), administ(er)

ChemProt Phosphoryl(ate), attenu(ate), stimul(ate), deriv(e), regul(ate)

Novel, metabol(ize), reduc(e), induc(e), inhibit
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Previously, we demonstrate that the attention mechanism assigns large weights to rela-
tion expression words (trigger word and entity token) through examples. Next, we will 
consider the attention weights in the corpus level. Specifically, we investigate the dis-
tribution of the attention weights on all the words in the dataset. Given that the entities 
and the trigger words are usually near to each other for the relation expression, we only 
consider the three words around the entities for the weights distribution. In particular, 
we see the average of the weights as the global attention weight for the word. In Table 8, 
we give some examples (words that have large attention weight) from the dataset of the 
tasks. In the table, most of the words can be considered as “trigger words” of the rela-
tions. Thus, we can say that the attention mechanism is able to learn some key knowl-
edge of relation expression.

Methods
In this work, we see relation extraction as a classification problem. Specifically, when 
a sentence and two entity mentions are given, we have to tell if the sentence expresses 
a specific relation between the two entities. Here we employ the BERT model to solve 
the relation extraction problem, and we will design approaches to improve the pre-
training and fine-tuning of BERT model.

In this section, we first give some background knowledge about BERT model. Then 
we describe our approach of improving the pre-training of BERT using sub-domain 
adaptation. Next, we introduce the basics of utilizing edge probing to explore the 
learned knowledge in different layers of BERT model. We then discuss the SLL fine-
tuning of incorporating the knowledge from the last layer. At last, we give the details 
of our experiment setup and data pre-processing.

Introduction of BERT

BERT [14] is language representation model using bidirectional transformer [16]. 
Trained with “masked language model” technique, BERT is able to learn the con-
text of a word from both left and right side in the text (sentence). To apply the BERT 
model on a specific task, it needs two steps: (1) pre-training on unlabeled text to 
obtain general knowledge of a domain; (2) fine-tuning on labeled data to gain the spe-
cific knowledge of a task.

Pre-training of BERT In this stage, BERT can learn a general language representa-
tion via two well-designed tasks: masked language model (MLM) and next sentence 
prediction (NSP). The MLM technique randomly replaces a portion of tokens with 
a special token ([MASK] token), and lets the language model predict the replaced 
tokens. In the original BERT, MLM only selects subwords to mask. BioBERT, SciB-
ERT and BlueBERT follow this convention of subwords masking. The PubMedBERT 
utilizes whole-word masking (WWM) instead, which enforces the mask of the whole 
word in MLM if one or more of its subwords are chosen. In NSP, the model is trained 
to predict whether a sentence is followed another sentence in the original text given 
a sentence pair. The pre-training of BERT usually utilize a great quantity of unlabeled 
data. In addition, BERT is originally designed for the general domain, and it is pre-
trained on two datasets: English Wikipedia and BooksCorpus.
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BERT for general domain might generalize poorly on a specific domain since every 
domain has its unique knowledge. BERT can not gain such knowledge without pre-
training on the data for specific domain. For instance, the representation of the bio-
medical entity names from the general BERT model will be of low quality, since the 
pre-training datasets contains too few such names for the BERT model to generalize 
well. Thus we need to adapt the BERT model to biomedical domain before applying it 
to biomedical tasks (a.k.a., pre-training the BERT model on biomedical data). There 
are two ways of adapting BERT model: (1) continual pre-training using biomedical 
data from pre-trained BERT for general domain (e.g., BioBERT [17]); (2) pre-train-
ing BERT on biomedical data from scratch (e.g., PubMedBERT [20]). Obviously, the 
difference between these two types of adapted models is whether to use the general 
domain data before the biomedical domain adaptation. In this paper, we experiment 
with those two types of adapted BERT models for the biomedical domain.

Fine-tuning of BERT The task-agnostic representation (from pre-training) can be fine-
tuned for diverse downstream tasks via supervised training on labeled datasets. For a 
specific task, we just need to attach a custom layer on the last layer of BERT. Next, the 
BERT parameters can be fine-tuned like supervised learning using the labeled data of a 
specific task. For our classification tasks, we can build a classifier by appending a soft-
max layer on the output of [CLS] token. The full name of [CLS] is “classification”, and it 
is designed for the purpose of classification in BERT. In the input for BERT, the sequence 
always starts with [CLS] token.

Improving pre‑training using sub‑domain data

We can see from Table 2 that the different pre-training data lead to significantly differ-
ent performance on our focused tasks. Inspired by this observation, we explore whether 
task-related pre-training data could improve the BERT model. Specifically, we investi-
gate whether adding an extra pre-training step using task-related data after the domain 
adaptation pre-training to help model generalization. We call it sub-domain adaptation 
as we are seeking to tailor the model further for specific tasks.

In sub-domain adaptation, we use the following way to extract the sub-domain data that 
are related to a specific relation extraction task. We assume that the text containing some 
type(s) of entity in a relation (e.g., protein for the PPI relation) is relevant to the specific 

Fig. 3  BERT model training process with sub-domain adaptation



Page 13 of 20Su and Vijay‑Shanker ﻿BMC Bioinformatics          (2022) 23:120 	

relation extraction task. Since PubMed is our main source of pre-training data, we extract 
the PubMed abstracts containing specific types of entity as the sub-domain data. Specifi-
cally, for the PPI task, we extract abstracts from PubMed via the query “Protein OR Gene” 
and we obtain 7,729,611 abstracts for protein/gene domain using this query. Similarly, the 
DDI task involves the drug entities, so we use the PubMed query “Drug” and 5,714,799 
abstracts are extracted as pre-training data for drug domain. For the ChemProt task, we 
use Pubtator [33] to extract the PubMed abstracts that contain protein/gene and chemi-
cal entities, and 3,375,380 abstracts are used as the sub-domain data.

The new training process of BERT model is illustrated in Fig. 3. The first box represent 
the standard creation of BERT models for biomedical domain. The rightmost box also is 
the standard fine-tuning for the relation extraction tasks. Our experiment here involves 
the inclusion of sub-domain adaptation in the middle box of Fig. 3.

Improving the fine‑tuning of BERT

As we discussed before, the BERT model for relation extraction classification problem 
only utilizes the classification ([CLS]) token when it is fine-tuned on the training dataset. 
If the last layer contains useful information about the task, we should incorporate it to 
boost the model performance during fine-tuning. In this subsection, we first introduce 
the edge probing technique and then utilize it to verify the usefulness of the information 
in the last layer of BERT. Then, we propose two methods to incorporate the information 
from the last layer in a refined fine-tuning mechanism.

Introduction of edge probing

Edge probing is proposed in [28] to measure the quality of encoded information about 
linguistic structure in a pre-trained encoder (BERT in our case). Specifically, edge prob-
ing aims to evaluate how well the word is represented in each position, and what knowl-
edge is learned about the structural information of the sentence. For instance, through 
edge probing, we can know if the constituent information (like noun phrase or verb 
phrase) of the words is encoded in the representation from the encoder. To achieve 
this goal, edge probing converts this problem into classification tasks and builds prob-
ing classifiers using the word representations and the expected labels. Based on the per-
formance of the probing classifier, we can measure how well the structural information 
about that word in the sentence is encoded. Let us take the constituent type as an exam-
ple, the phrase “is a global brand” in the sentence “The important thing about Disney is 
that it [is a global brand].” is a verb phrase (VP), so the probing classifier should predict 
the type “VP” when it is given the representation of “is a global brand”. Usually, we use 
multi-layer perceptron (MLP) for probing classifier. Also, the parameters of encoder are 
frozen during the training of probing classifier. For more detailed description of probing 
classifier on different type of relations, we refer readers to the paper [28].

Originally, the edge probing is to investigate the role of words in the sentence in [28]. 
In [27], the scalar mixing technique [13] is combined with edge probing to explore the 
encoded information from different layers of the encoder. In particular, through this 
approach, we can tell which layer(s) are most relevant to a specific task. In formal, let 
hl = [hl

0
, hl

1
, . . . , hlN ] be the word representation after l-th layer of the encoder, then we 

can build a probing classifier (Fig. 4) using the first l layers:
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where αl = softmax([α(0),α(1), . . . ,α(l)]) and N is the sequence length. During the train-
ing, the parameters γl and αl will be jointly learned. After the training of Pl

τ
 , we can use 

the learned parameters αl to estimate the contribution of each layer for our task. If the 
weight α(i) for the i-th layer is high, we can say that the i-th layer contains more rel-
evant information about our task. In this work, we use the framework of edge probing to 
measure the learned knowledge in the layers of BERT model.

Investigation of the knowledge in the last layer

In the previous subsection, we demonstrate that the contribution of each layer in BERT 
can be learned through the weights for layers in a probing classifier. However, those 
weights are irrelevant to the training data distribution, which means we can not tell how 
many layers BERT needs to predict a specific instance correctly. This yields a question: 
what knowledge about the training data is only learned in the l-th layer, but not learned 
in the first (l-1) layer(s)?

Similar to the exploration in [27], the above problem can be addressed by training a 
series of probing classifier {Pl

τ
}Ll=1

 , where L is the total layers of the encoder. The clas-
sifier Pl

τ
 utilizes all the information from the first l layers, while the knowledge in the 

first l-1 layers is employed in the classifier Pl−1
τ

 . Therefore, the difference of performance 

hi,l = γl

l
∑

k=0

α
k
l h

k
i , i = 1, . . . ,N

Pl
τ
= MLP([h0,l , h1,l , . . . , hN ,l])

Fig. 4  Probing classifier architecture. We freeze the parameters of BERT model during the training of probing 
classifier. Through the learned α , we can know the relevance between each layer and the task. Also, we can 
tell which layer learns the knowledge for a specific instance by building a series of probing classifier {Pl

τ
}L
l=1

 . 
For the relation extraction instance “RFX5 interacts with histone deacetylase 2”, if the probing classifier Pl

τ
 

predicts the interacting relationship between proteins “RFX5” and “histone deacetylase 2” correctly using the 
information of the first l layers, but Pl−1

τ
 does not predict correctly using the information of the first (l-1) layers. 

We can say that the knowledge about this instance is learned in the l-th layer
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score (F1 score) �l
τ
 on test data between Pl

τ
 and Pl−1

τ
 stands for the learned knowledge 

only from the l-th layer:

After calculating {�l
τ
}Ll=1

 , we can acquire the distribution of the learned knowledge from 
the training data in each layer.

Our purpose is to investigate whether the last layer contains useful information for our 
tasks, so here we build the probing classifiers using the fine-tuned BioBERT model [17]. 
During training, we freeze the weights of BioBERT and only adjust the parameters of the 
probing classifiers. We show the score �L

τ
 (measurement of knowledge) of the last layer 

of BioBERT for the datasets of our three tasks in Fig. 1. We can see that the last layer 
(12-th layer for the BERTbase model) contains useful information in all cases and it is 
necessary to incorporate the discarded knowledge during fine-tuning.

Refined fine‑tuning for the BERT model

We have shown that the fine-tuning method of only using classification token (CLS) dis-
cards some useful information in the last layer. Also, during the pre-training of BERT, 
the [CLS] token is only utilized in the next sentence prediction (NSP) task. This means 
that the [CLS] token might not encode the information about the interaction between 
entities because it is not designed to gain this type of information. In this subsection, we 
describe the mechanism of incorporating all the available information of the last layer in 
the BERT fine-tuning process. The proposed mechanism is called SLL fine-tuning: fine-
tuning with information summarization in the last layer of BERT.

Our method includes two steps: (1) summarizing the ignored outputs in the last layer; 
(2) concatenating the summarized knowledge to the [CLS] output as final output from 
BERT. In step 1, we explore two types of methods of summarizing the information of the 
last layer: recurrent neural network (LSTM [34] and biLSTM [35]) and attention mecha-
nism. In Fig. 5, we show the BERT model architectures after appending these two meth-
ods on the outputs of the last layer.

Formally, let H be the dimension of hidden states and L be the layer number of BERT 
model, then all the information in the last layer can be represented:

where hLCLS and hLSEP are the classification token output and separation token out-
put, respectively. Previously, only hLCLS is used for classification problem during fine-
tuning. Here we first summarize the discarded information in the last layer, i.e., 
hL = {hL

1
, hL

2
, . . . , hLN } , (the sentences separation token hLSEP is ignored here) using the 

RNN sequence model and attention mechanism: 

1	 The first choice of model to summarize a sequence is the recurrent neural network. 
Among RNN models, we choose LSTM because it handles the “long-term depend-
encies” better. Also, we utilize biLSTM to summarize the sequence in both forward 
and backward directions. We take the output of last LSTM unit as the representation 

�
l
τ
= Score(Pl

τ
)− Score(Pl−1

τ
)

hLall =
{

hLCLS , h
L
1, h

L
2, . . . , h

L
N , h

L
SEP

}
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of our sequence in LSTM. As for biLSTM, we just concatenate the outputs of first 
unit in backward direction and the last unit in forward direction as the final repre-
sentation: 

Fig. 5  Model architectures after incorporating all outputs from the last layer. In a we show both LSTM 
(only black in the RNN box) and biLSTM (both black and grey line in the RNN box). a RNN on the last layer. b 
Attention on the last layer
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2	 Attention mechanism is another option of summarizing sequence data, which 
assigns a weight to each component. In particular, we employ the additive attention 
to summarize the sequence: 

 where KH×1 are trainable parameters.
After the summarization, the output from RNN/attention mechanism is concatenated to 
the [CLS] output, and this combined output is the final output of BERT:

Then, we put a softmax layer on top of this representation to calculate the probability 
distribution on the labels:

where WC×H
f  , bC×1

f  are trainable parameters. C denotes the number of categories 
(classes) of our tasks.

In all the fine-tuning mechanisms we described so far, they all involve the use of 
[CLS] token. It is necessary to investigate the role of [CLS] token and measure its con-
tribution on the classification tasks. Thus we experiment with the fine-tuning process 
in which [CLS] token is removed from the final output. In formal, we only use h = [O] 
as the final output of the BERT model for the input. Then, the same softmax layer 
p = softmax(Wf h+ bf ) is utilized for predicting the relation type. The experiments 
using these two different fine-tuning methods can help interpret the roles of the [CLS] 
output and sentence outputs when the BERT model is applied on classification task.

Combining the techniques for pre‑training and fine‑tuning

We have proposed techniques to improve the BERT model in both the pre-training and 
fine-tuning stage, so a natural idea is to combine these two techniques. For the new 
BERT model, we add an extra step for sub-domain adaptation in the pre-training and 
utilize the SLL mechanism in fine-tuning stage. In this way, we take the full advantage 
of the knowledge in the sub-domain data and the learned information in the last layer of 
BERT model.

Experiment setup

For the sub-domain adaptation, we train the BERT with 100K steps on the sub-domain 
data using maximum sequence length of 128, learning rate of 2e-5, and batch size of 192 
in our experiments. In the sub-domain pre-training for BioBERT, we follow its settings 

O =

{

LSTM(hLi ) (LSTM)

LSTM(
−→
hi

L
)⊕ LSTM(

←−
hi

L
) (biLSTM)

[αi] = softmax(hLK )

O =

N
∑

i=1

αih
L
i

h = hLCLS ⊕ O.

p = softmax(Wf h+ bf )
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in masked language model task and only utilize subwords masking. In contrast, we 
employ whole word masking in the pre-training of PubMedBERT. We employ Google 
Cloud TPU (v3-8) for the sub-domain pre-training, and it takes about 4 h for the pre-
training of each sub-domain.

For the BioBERT model fine-tuning, we use maximum sequence length of 128, train-
ing epoch of 10, learning rate of 2e–5, and batch size of 32. For the fine-tuning of Pub-
MedBERT model, maximum sequence length of 256, training epoch of 10, learning rate 
of 2e–5, and batch size of 16 are utilized. In the SLL fine-tuning, we use the hidden size 
of 768 in the LSTM and biLSTM model, and the sequence length is 128 on BioBERT 
outputs and 256 on PubMedBERT outputs. In the edge probing experiments, we use a 
two-layer perceptron as the probing classifier, and 1024 as the hidden layer unit number. 
During training of probing classifiers, we use learning rate of 2e–5 and training epoch of 
4. For the fine-tuning of BERT and the training of probing classifiers, we train the mod-
els on GeForce RTX 2080Ti GPU. The fine-tuning takes about 10 h, 2 h, and 3 h on the 
PPI, DDI, and ChemProt tasks respectively.

We implement our experiments using Tensorflow [36]. Our data and code are publicly 
available at: https://​github.​com/​udel-​biotm-​lab/​BERT-​RE.

Data pre‑processing

As illustrated before, one relation extraction instance includes two components: the 
text (sentence) and the entities in it. With the aim of making BERT model recognize the 
position of the biomedical entities, we follow the standard pre-processing step for rela-
tion extraction to replace the entity names with some predefined tags. For example, the 
protein names are replaced with the tag “@PROTEIN$”. Similarly, we replace the drug 
names and the chemical names with “@DRUG$” and “@CHEMICAL$”, respectively. In 
Table 9, we give some pre-processed instances from the corpora.

Conclusion
In this paper, we proposed two techniques to improve the pre-training and fine-tuning 
of BERT model. We first utilized the sub-domain data in the pre-training phase of BERT 
model to help its generalization on different tasks. Then we proposed a refined fine-tune 

Table 9  Pre-processed examples for the three tasks

Task Label Sentence examples

PPI Positive Nuclear protein @PROTEIN$ is a coactivator for

the transcription factor @PROTEIN$.

Negative Their order of selection was @PROTEIN$ effusion,

@PROTEIN$ serum, TNFalpha-effusion, and C3 effusion.

DDI EFFECT @DRUG$ may increase the ototoxic potential of other drugs

such as aminoglycoside and some @DRUG$.

MECHANISM Cimetidine: @DRUG$ increases @DRUG$ plasma levels.

ChemProt CPR:6 We conclude that @CHEMICAL$ and BAAM are competitive

slowly reversible @PROTEIN$ antagonists on rat left atria.

CPR:9 @PROTEIN$ plays a role in purine salvage by catalyzing the

direct conversion of adenine to @CHEMICAL$.

https://github.com/udel-biotm-lab/BERT-RE
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process to utilize all the knowledge in the last layer of BERT model. In addition, we 
explored the combination of those two techniques. We demonstrated that the proposed 
methods are effective on three widely studied relation extraction tasks. Furthermore, the 
experiment results showed that the proposed methods achieve better performance on 
all three tasks and we achieved state-of-the-art performance on three relation extraction 
benchmark sets. In the future, we will apply our method on other relation extraction 
tasks in biomedical domain.
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